
LECTURE 9: FERMIONS AND THE DIRAC OPERATOR

Last week we have seen that to describe fermions quantum-mechanically, one needs
the theory of Grassmann variables. This week we aim for the classical mechanical de-
scription of fermions, which leads us to the theory of spinors and the Dirac equation.
The associated differential operator that appears in this equation is called the Dirac
operator, and has become increasingly important also in Mathematics, most notably ge-
ometry and topology, since the pioneering work of Atiyah and Singer in the 60’s and
70’s.

1. MOTIVATION: THE DIRAC EQUATION

We start this lecture by a more physical introduction. The Dirac operator was in-
vented in 1928 by P.A.M. Dirac as part of his theory of spin 1/2 elementary particles
such as the electron. Here we briefly recall the main points of his argument deriving
what is now called the Dirac equation, as it already highlights some of the main charac-
teristics of the general theory.

We work in Minkovski spacetime which is just R4 equipped with the−+++ metric
ηµν. As usual, we write the coordinates of a point in spacetime as xµ := (t, x, y, z), where
t is the time coordinate and (x, y, z) the space coordinates. As explained in Lecture II,
the Laplacian in this Minkovski spacetime is given by

(1) � := ∑
µ,ν

ηµν ∂

∂xµ

∂

∂xν
= − ∂2

∂t2 +
∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2 .

This operator is also called the d’Alambertian operator. The fundamental equation of
motion for a scalar (i.e., spin 0) field φ(x) is given by the so-called Klein–Gordon equation

(�+ m2)φ = 0,

which expresses the fundamental relativistic relation between energy and mass m. For
spin 1/2 particles, Dirac was looking for a first order field equation, compatible with
the Klein–Gordon equation. For this he postulated a general first oder equation of the
form

(2) (D−m)ψ = 0,

where D = ∑µ γµ ∂
∂xµ is a general first order differential operator in all variables, with

coefficients γµ not depending on the coordinates xµ. Suppose that the field ψ(x) satisfies
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equation (??). Applying the operator D once more to this equation, we get

0 = (D2 −m2)ψ

which must be equal to (minus) the Klein–Gordon equation in order not to violate the
special theory of relativity. Therefore we must have

−� = D2 =
1
2 ∑

µ,ν
(γµγν + γνγµ)

∂

∂xµ

∂

∂xν
,

which leads to the requirement

(3) γµγν + γνγµ = −2ηµν

Clearly the γµ cannot be ordinary numbers in order to satisfy these relations, but Dirac
found the following 4× 4-matrices that do satisfy these relations:

γ0 =



1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1


, γ1 =



0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0


, γ2 =



0 0 0 −i
0 0 i 0
0 i 0 0
−i 0 0 0


, γ3 =



0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0



These matrices are the basic ingredients of Dirac’s theory: Spin 1/2 particles in field
theory are not described by scalar fields, but rather ψ(x) is vector-valued function with
values in C4. The classical field equation satisfied by this field is the Dirac equation (??).
The operator D appearing in this equation is called the Dirac operator.

Recall that the fundamental property of the Klein–Gordon equation was its invari-
ance under the Lorentz group. So what about the Dirac equation? The Lorentz group
is simply SO(3, 1), the group of all linear maps preserving the metric ηµν. This is a Lie
group whose Lie algebra is spanned by Ja, a = 1, 2, 3 (generating spatial rotations) and
Ka, a = 1, 2, 3 (generators of boosts) satisfying

[Ka, Kb] = −iεabc Jc

[Ja, Kb] = iεabcKc

[Ja, Jb] = iεabc Jc

Defining ξ±a := 1
2 (Ja ± iKa), these relations transform to

(4) [ξ±a , ξ±b ] = iεabcξ±c , [ξ+a , ξ−b ] = 0.

Of course the well-known Pauli spin matrices

σ1 :=

(
0 1
1 0

)
, σ2 :=

(
0 −i
i 0

)
, σ3 :=

(
1 0
0 −1

)
,

satisfy very similar commutation relations, namely[σa

2
,

σb

2

]
= iεabc σc

2
.
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We can also recognize these matrices as blocks in the γ-matrices, and this suggests the
following action of the Lie algebra of the Lorentz group on spinors: we decompose
C4 = C2⊕C2, with the Lie algebra (??) acting on the first copy of C2 sending ξ+a 7→ σa/2
and ξ−a 7→ 0. For the second copy we have the opposite: ξ−a 7→ σa/2 and ξ+a 7→ 0. Upon
exponentiating, we find that a Lorentz transformation with rotation angles ~θ and boost
parameters ~φ is implemented by g(~θ,~φ) ∈ GL(4, C) defined by

(5) g(~θ,~φ) :=

exp
(

i
2~σ · (~θ + i~φ

)
0

0 exp
(

i
2~σ · (~θ − i~φ

)
With this transformation rule, one can check that the Dirac equation is indeed invariant.
The projector onto each of the two copies of C2, which are invariant subspaces of this
representation, is given by

π± =
1
2
(1± γ5), γ5 := iγ0γ1γ2γ3.

Also remark that with respect to this decomposition C4 = C2 ⊕ C2 the Dirac operator
maps the two subspaces to each other and takes the form

D =

(
0 D−

D+ 0

)
However, an important observation is that the representation (??) is not quite a repre-
sentation of the Lorentz group! Indeed if we just consider a rotation around the z-axis
with angle α ∈ [0, 2π), this implemented by the matrix(

eiα/2 0
0 e−iα/2

)
.

But this equals minus the identity for α = 2π and only return to the identity at α = 4π.
What is true is that the representation (??) is a representation of a double cover of the
Lorentz group, which happens to be the group SL(2, C). This means that there is a
covering map from SL(2, C) to the Lorentz group with kernel equal to Z/2Z:

(6) 1 −→ Z2 −→ SL(2, C) −→ SO(3, 1) −→ 1.

Conclusions. The theory above gives a description of fermions on MInkovski space, its
basic ingredient being the Dirac operator D = ∑µ γµ∂/∂xµ. Before we turn to problem of
generalizing this Dirac operator to general manifolds, we draw some conclusions from
the preceding discussion:

i) Fermions are vector valued rather than scalar fields: over a general manifold they
will be given by sections of a vector bundle S→ M.

ii) We need matrices satisfying the commutation relations (??). Mathematically this is
done by the theory of Clifford algebras and their representations. The crucial
difference is that on a general manifold the resulting “gamma-matrices” ψi(x)



4 LECTURE 9: FERMIONS AND THE DIRAC OPERATOR

will depend on the basepoint x ∈ M. To give away the punchline, the Dirac
operator will look like

D =
n

∑
i=1

ψi(x)∇S
∂/∂xi ,

in local coordinated x = (x1, . . . , xn) on M. Here ∇S is a suitable connection on
the bundle S.

iii) When it comes to invariance, we should be prepared to accept double coverings of sym-
metry groups. This is a theme that will be picked up in a later lecture.

2. CLIFFORD ALGEBRAS

As it turned out, the relations (??) had been considered from an abstract point of
view by the english mathematician William Clifford in 1876 in an attempt to generalize
Hamiltons’ quaternions to higher dimensions. The upshot of the story is that the equa-
tions (??) abstractly define an algebra (i.e., a vector space equipped with an associative
multiplication), and the Dirac γ-matrices define a specific representation of this algebra,
called the spinor representation. From the abstract point of view, there is really no need to
restrict to the case of Minkovski space, it works just as well for any inner product space:

Definition 2.1. Let (V, η) be a vector space V equipped with an inner product η. The
Clifford algebra Cliff(V, η) is the algebra generated by a linear map v 7→ ψ(v), v ∈ V,
subject to the relations

(7) ψ(v1)ψ(v2) + ψ(v2)ψ(v1) = −2η(v1, v2), for all v1, v2 ∈ V.

Remark 2.2. There is actually no need for the inner product η to be non-degenerate, we
can even put it to zero! In that case (η = 0) the Clifford relations amount to the fact that
the ψ(v) all anti-commute with each other, and therefore we see that Cliff(V, 0) =

∧
V,

the Grassmann algebra. Choosing a basis (e1, . . . , en) for V, and defining θi := ψ(ei), i =
1, . . . , n, we get exactly the algebra of Grassmann numbers (or variables) considered in
the previous lecture.

For a general inner product space (V, η) we can choose an orthonormal (e1, . . . , en)

so that V ∼= Rn with inner product given by

(8) η(x, y) = x1y1 + . . . + xpyp − xp+1yp+1 − . . .− xnyn,

Putting q := n− p, we denote this space by Rp,q, so that In this notation R3,1 is good
old Minkovski space. We write Cliffp,q for the Clifford algebra of Rp,q. In terms of the
basis {ei}n

i=1 of Rp,q we define ψi := ψ(ei). Then we see that a basis for Cliffp,q is given
by

(9) {1, ψi1 · · ·ψik | i1 < i2 < . . . < ik, k = 1, . . . , p + q},
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and therefore its dimension is 2n. The multiplication between the basis elements is
given by

(10) ψiψj = −ψjψi, i 6= j, ψ2
i =

−1 1 ≤ i ≤ p

1 p + 1 ≤ i ≤ p + q.

This gives a very concrete description of the Clifford algebra.

Example 2.3. Let us work out some easy examples for low degrees of p and q

i) For p = 0 = q we have Cliff0,0 = R. (This is more a definition.)
ii) For p = 1, q = 0, Cliff1,0 is 2-dimensional, and has one generator ψ satisfying

ψ2 = −1. This is just the complex numbers: Cliff0,1 = C!
iii) The algebra Cliff2,0 is 4-dimensional and has generators 1, i := ψ1, j := ψ2 and

k := ψ1ψ2. Working out the relations we see:

i2 = j2 = k2 = −1, ij = k = −ji, ijk = −1, etc.

These are the quaternions H.
iv) The algebra Cliff0,1 is 2-dimensional with generator ψ satisfying ψ2 = 1. This

can only be R⊕R, equipped with the component-wise multiplication.
v) The algebra Cliff0,2 is 4-dimensional. The map defined on generators by

1 7→
(

1 0
0 1

)
, ψ1 7→

(
0 1
1 0

)
, ψ2 7→

(
1 0
0 −1

)

gives and isomorphism Cliff0,2 ∼= M2(R).
vi) Very relevant to physics is of course the algebra Cliff3,1 which corresponds to

Minkovski space R3,1. In this case, as explained in previous section, the Dirac’s
γ-matrices satisfy the Clifford relations (??). Mathematically, this means that
they define a representation of Cliff3,1. In the next section we shall study repre-
sentations of Clifford algebras in general.

Definition 2.4. The volume element in Cliffp,q is defined by

τ := ψ1 · · ·ψn.

Lemma 2.5. The volume element τ satisfies

τ2 = (−1)
n(n−1)

2 +p, ψiτ = (−1)n−1τψi

The proof of this Lemma is an exercise.
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3. REPRESENTATIONS OF CLIFFORD ALGEBRAS

In mathematics, we usually distinguish between abstract algebraic structures and
relations (such as the algebra Cliff3,1) and concrete incarnations on vector spaces (such
as the Dirac γ-matrices. For example, an abstract group G is a set equipped with an
associative multiplication which has a unit and inverses. A representation of G is given
by a vector space V together with a homomorphism ϕ : G → GL(V). Concretely, this
means that we can represent each element g ∈ G by an invertible matrix ϕ(g) so that the
matrices satisfy all the relations defining the specific group G. The mathematical study
of all representations of a given group is called its representation theory. This fits nicely
with the paradigm of Quantum Mechanics: classical mechanics is usually described in
terms of a manifold with symmetries given by a group G acting on it. The associated
Quantum Mechanical system is as usual formulated in terms of a Hilbert space H (in
particular a vector space), where the symmetries are represented by invertible linear
operators, i.e., a representation of G!

Coming back to Clifford algebras, the situation is similar.

Definition 3.1. A representation of Cliff(V, η) is given by a complex vector space M
together with a homomorphism of algebra Cliff(V, η)→ End(M).

Example 3.2. Consider the exterior algebra
∧

V of V. Given v ∈ V, we consider the
following two operators on

∧
V: first we have ε(v), given by exterior multiplication by

v, and second ι(v) given by contraction with the covector η(v,−) ∈ V∗:

ε(v)(v1 ∧ . . . ∧ vk) := v ∧ v1 ∧ . . . ∧ vk,

ι(v)(v1 ∧ . . . ∧ vk) := ∑
i
(−1)iη(v, vi)v1 ∧ . . . ∧ v̂i ∧ . . . ∧ vk,

where the hat means omission from the argument. With these two operators, the com-
bination

ψ(v) := ε(v)− ι(v) ∈ End(
∧

V)

satisfy the commutation relations (??), in other words, define a representation of Cliff(V, η).
The only point is perhaps that this is a real vector space. But we can always complexify
and consider

∧
V ⊗C to get a complex representation.

4. THE DIRAC OPERATOR

We now return to geometry. Our goal is to define a Dirac operator on a pseudo-
riemannian manifold (M, g), generalizing the Dirac operator in Minkovski space dis-
cussed in §??. In fact we already have all the ingredients for the Dirac operator on flat
space, not just Minkovski space. Let (V, η) be a vector space with inner product, and
suppose that we are given a representation M of Cliff(V, η). The Dirac operator is a first
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order differential operator acting on M-valued functions:

D =
n

∑
i=1

ψ(ei)
∂

∂xi ,

where {ei}n
i=1 is an orthonormal basis of V. The Clifford relations give the fundamental

property
D2 = −∆

From the formula of the Dirac operator above it becomes immediately clear what is
needed to define the Dirac operator on a general manifold: there is no invariant/canonical
way to differentiate sections of a vector bundle, for this we have to choose a connec-
tion. Therefore, before we proceed, we need to recall the Levi–Civita connection on a a
pseudo-riemannian manifold.

4.1. The Levi–Civita connection. Let M be a smooth n-dimensional manifold. A pseudo-
riemannian metric on M is given by an inner product gx : Tx M× Tx M → R which de-
pends smoothly on x ∈ M. More precisely, it is given by a smooth symmetric tensor
field in T∗M ⊗ T∗M which defines a indefinite inner product on each tangent space
Tx M. In local coordinates (x1, . . . xn) : U → Rn we can write

g(x) = gij(x)dxi ⊗ dxj.

Locally, we can find an orthonormal frame {ei(x)}n
i=1, x ∈ U ⊂ M of TM, which

brings the metric into normal form (??). The pair of integers (p, q) are an invariant of
the manifold, called the signature. When q = 0 we have a riemannian manifold (this
is what is usually considered in mathematics, here the metric is positive definite), and
when p = 3, q = 1 we say the manifold is Lorentzian.

Proposition 4.1. Given a riemannian metric g, there exists a unique connection on TM, called
the Levi–Civita connection ∇LC satisfying

i) (compatibility with the metric)

Zg(X, Y) = g(∇LC
Z X, Y) + g(X,∇LC

Z Y), for all vector fields X, Y, Z ∈ X(M),

ii) (Torsion-free)
∇LC

X Y−∇LC
Y X = [X, Y].

This connection is uniquely determined by the equation

g(∇XY, Z) =
1
2
(Xg(Y, Z)− Zg(X, Y) + Yg(Z, X)(11)

− g(X, [Y, Z]) + g(Z, [X, Y]) + g(Y, [Z, X])) .

Proof (sketch): First check that properties i) and ii) imply (??). Then prove that the right
hand side, for fixed X, Y is tensorial in Z in the sense that it is C∞(M)-linear. Conclude
that we can write ω(Z) for the right hand side, for a unique one-form ω. Using the
nondegeneracy of g, define g(∇LC

X Y, Z) = ω(Z). Then check that the ∇LC thus defined
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is indeed a connection. Finally, the metric and torsion free property follow from (??).
This same equation also shows that ∇ is unique. �

In local coordinates the connection writes out as

∇∂/∂xi ∑
j

X j ∂

∂xj = ∑
j

∂X j

∂xi
∂

∂xj + ∑
jk

Γj
ikXk ∂

∂xj ,

where Γj
ik are called the Christoffel symbols. This corresponds to the usual decomposition

∇LC = d + Γ in the local trivialization of TM induced by the choice of local coordinates,
with Γ ∈ Ω1(M, End(TM)). We see from equation (??) that the Christoffel symbols are
defined by the metric by the formula

Γk
ij =

1
2 ∑

l
gkl
(

∂gil

∂xj +
∂gjl

∂xi −
∂gij

∂xl

)
,

where gij denotes the components of the inverse of the matrix (gij).

4.2. Clifford modules. Let (M, g) be a pseudo-riemannian manifold of signature (p, q).
For each point x ∈ M, the tangent space Tx M comes equipped with the metric gx :
Tx M × Tx M → R, and we can consider the Clifford algebra Cliff(Tx M, gx) associated
to this metric space. Varying the basepoint x ∈ M, we obtain in this way a bundle
of Clifford algebras Cliff(TM, g), with the property that for each x ∈ M there is an
isomorphism Cliff(Tx M, gx) ∼= Cliffp,q.

Definition 4.2. A Clifford bundle over (M, g) is a vector bundle S→ M with connection
∇S with the following properties:

i) for each x ∈ M, Sx is a representation of Cliff(Tx M, gx), i.e., S is a bundle of
Clifford representations,

ii) the connection∇S is compatible with the Levi-Civita connection in the following
way:

∇S
X(Y · s) = (∇LC

X Y) · s + Y · (∇S
Xs),

for all X, Y ∈ X(M) and s a section of S. In this equation, the · indicates the
Clifford action of a vector field, i.e., a section of TM ⊂ Cliff(TM, g) on S.

Example 4.3. The easiest example of a Clifford bundle is simply the bundle version of
the easiest example ?? of a representation of the Clifford algebra. However, now it is
more natural to consider the dual

∧
T∗M because sections of this bundle are differential

forms. Therefore we define ι(X) to be the contraction with a vector field X ∈ X(M), and
ε(X) to be the wedge product with the one form g(X,−) ∈ Ω1(M) dual to X, and define

ψ(X) := ε(X)− ι(X).

As for the case that M equals a point in Example ??, this turns
∧

T∗M into a bundle of
representations of Cliff(TM). As we have seen in Remark ??, the Levi–Civita connection



LECTURE 9: FERMIONS AND THE DIRAC OPERATOR 9

induces a connection on
∧

T∗M =
⊕

k≥0
∧k T∗M, and one can check that with this

connection, the bundle becomes a Clifford bundle.

4.3. The Dirac operator associated to a Clifford bundle. The key point is now that a
Clifford bundle contains just the right amount of information to define a Dirac operator:

Definition 4.4. Let (S,∇S) be a Clifford bundle over a pseudo-riemannian manifold
(M, g). The Dirac operator D associated to S is the differential operator given by the
composition

Γ(M, S) ∇
S
−→ Γ∞(M, T∗M⊗ S)

T∗M g
∼= TM
−→ Γ∞(M, TM⊗ S)

Clifford
multiplication−→ Γ∞(M, S)

Suppose that {ei}n
i=1 is a local orthonormal system of vector fields on U ⊂ M. Then

the definition of the Dirac operator above amounts to the local formula

Ds =
n

∑
i=1

ψ(ei)∇S
ei

s

Example 4.5. In the Example ?? of a Clifford bundle, the associated Dirac operator is
given by

D =
n

∑
i=1

ε(ei)∇LC
ei
−

n

∑
i=1

ι(ei)∇LC
ei

= d + d∗

This last identity is a nontrivial computation that we postpone for now.

4.4. The square of the Dirac operator. Finally, let us go back to the original motivation
and try to relate the square of the Dirac operator to the Laplacian on a Riemannian
manifold. On a general manifold, it is no longer true that the Dirac operator squares to
the Laplacian:

D2 =
n

∑
i,j=1

(ψ(ei)∇S
ei
)(ψ(ej)∇S

ej
)

= ∑
i,j=1

ψ(ei)ψ(ej)∇S
ei
∇S

ej

= −
n

∑
i=1

(∇S
ei
)2 + ∑

i<j
ψ(ei)ψ(ej)(∇S

ei
∇S

ej
−∇S

ej
∇S

ei
).

In this computation we have chosen a synchronous frame ∇S
ei

ej = 0 at a given point
x0 ∈ M. The nature of the two terms above is quite different: the first term is a second
order differential operator resembling the Laplacian, whereas the second term is related
to the curvature of ∇S: this is a zeroth order differential operator. We will see in later
lectures that this so-called Weitzenböck formula for the square of the Dirac operator shows
that D2 and the Laplacian have the same principal symbol.


